ATL:
Atlas Transformation Language

ATL Transformation Description Template
- version 0.1 -

December 2005

by
ATLAS group
LINA & INRIA
Nantes
Content

1. Transformation Specification Sheet ... 3
2. Transformation Specification Sheet Template .. 5
3. Transformation Specification Sheet Example .. 6
1 Transformation Specification Sheet

<table>
<thead>
<tr>
<th>Short Name: (<t\textunderscore short_name>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short name of the transformation (e.g. UML2MSProject).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Full Name: (<t\textunderscore full_name>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full name of the transformation (e.g. From UML Activity Diagram to Microsoft Project).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Short Description: (<t\textunderscore short_description>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short textual description of the transformation (less than 10 lines).</td>
</tr>
</tbody>
</table>

Source Metamodels:
- \(<mm\textunderscore name>: \(<m\textunderscore name>;\), \ldots, \(<m\textunderscore name>\>)\)
 - \(<mm\textunderscore reference>\) or \((<mm\textunderscore textual_description>\text{and/or} <mm\textunderscore graphical_description>)\)
 - **Pre-conditions:**
 - \(<textual\textunderscore condition_description>\)
 - [**Specification:** \(<ocl\textunderscore condition_specification>\)\]?

List of the transformation source metamodels. For each metamodel:
- name of the metamodel, followed by the list of source models that conform to it, followed by either a reference to the metamodel (typically a URI or a bibliographic reference), or a textual and/or a graphical representation of the metamodel;
- metamodel pre-conditions. These conditions must specifically apply to the metamodel (e.g. restricting the range of an integer attribute). For each pre-condition:
 - textual description of the condition followed by an optional OCL condition specification.

Target Metamodels:
- \(<mm\textunderscore name>: \(<m\textunderscore name>;\), \ldots, \(<m\textunderscore name>\>)\)
 - \(<mm\textunderscore reference>\) or \((<mm\textunderscore textual_description>\text{and/or} <mm\textunderscore graphical_description>)\)
 - **Post-conditions:**
 - \(<textual\textunderscore condition_description>\)
 - [**Specification:** \(<ocl\textunderscore condition_specification>\)\]?

List of the transformation target metamodels. For each metamodel:
- name of the metamodel, followed by the list of target models that conform to it, followed by either a reference to the metamodel (typically a URI or a bibliographic reference), or a textual and/or a graphical representation of the metamodel;
- metamodel post-conditions. These conditions must specifically apply to the metamodel (e.g. restricting the range of an integer attribute). For each post-condition:
 - textual description of the condition followed by an optional OCL condition specification.

Additional Pre-Conditions:
- \(<textual\textunderscore condition_description>\)
 - [**Specification:** \(<ocl\textunderscore condition_specification>\)\]?

List of the additional pre-conditions. It includes all pre-conditions applying to the source models. For each pre-condition:
- textual description of the condition followed by an optional OCL condition specification.
Additional Post-Conditions:
- `<textual_condition_description>`

 [Specification: `<ocl_condition_specification>`]?

List of the additional post-conditions. It includes all post-conditions applying to the target models. For each post-condition:
- textual description of the condition followed by an optional OCL condition specification.

Pseudo Code: `<pseudo_code>`

Any style of pseudo code is acceptable.
2 Transformation Specification Sheet Template

<table>
<thead>
<tr>
<th>Short Name:</th>
<th><t_short_name></th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Name:</td>
<td><t_full_name></td>
</tr>
<tr>
<td>Short Description:</td>
<td><t_short_description></td>
</tr>
<tr>
<td>Source Metamodels:</td>
<td></td>
</tr>
<tr>
<td>• <code><mm_name></code>: <code><m_name></code>, …, <code><m_name></code></td>
<td></td>
</tr>
<tr>
<td><code><mm_reference></code> or (<code><mm_textual_description></code> and/or <code><mm_graphical_description></code>)</td>
<td></td>
</tr>
<tr>
<td>Pre-conditions:</td>
<td></td>
</tr>
<tr>
<td>• <code><textual_condition_description></code></td>
<td></td>
</tr>
<tr>
<td>[Specification: <code><ocl_condition_specification></code>]?</td>
<td></td>
</tr>
<tr>
<td>Target Metamodels:</td>
<td></td>
</tr>
<tr>
<td>• <code><mm_name></code>: <code><m_name></code>, …, <code><m_name></code></td>
<td></td>
</tr>
<tr>
<td><code><mm_reference></code> or (<code><mm_textual_description></code> and/or <code><mm_graphical_description></code>)</td>
<td></td>
</tr>
<tr>
<td>Post-conditions:</td>
<td></td>
</tr>
<tr>
<td>• <code><textual_condition_description></code></td>
<td></td>
</tr>
<tr>
<td>[Specification: <code><ocl_condition_specification></code>]?</td>
<td></td>
</tr>
<tr>
<td>Additional Pre-Conditions:</td>
<td></td>
</tr>
<tr>
<td>• <code><textual_condition_description></code></td>
<td></td>
</tr>
<tr>
<td>[Specification: <code><ocl_condition_specification></code>]?</td>
<td></td>
</tr>
<tr>
<td>Additional Post-Conditions:</td>
<td></td>
</tr>
<tr>
<td>• <code><textual_condition_description></code></td>
<td></td>
</tr>
<tr>
<td>[Specification: <code><ocl_condition_specification></code>]?</td>
<td></td>
</tr>
<tr>
<td>Pseudo Code:</td>
<td><pseudo_code></td>
</tr>
</tbody>
</table>
3 Transformation Specification Sheet Example

Short Name: UML2MSProject

Full Name: From UML Activity Diagram to Microsoft Project

Short Description: The UML2MSProject transformation generates a MS Project from a loop free UML activity diagram (describing some tasks series). The transformation is based on a simplified subset of the UML State Machine metamodel. This transformation produces a project defined in conformance to a limited subset of XML format loaded by MS Project.

Source Metamodels:
- UML2.0 : Um1

Pre-conditions:
- Considered metamodel is restricted to the Activity Diagram part of UML specification

Target Metamodels:
- MSProject : MsProject

```java
package MSProject {
    class MSProject {
        reference tasks[1-*] container : Task;
    }

    abstract class NamedElement {
        attribute name : String;
    }

    class Task extends NamedElement {
        attribute UID : String;
        reference predecessors[*] : Task;
    }
}
```

Post-conditions: Empty

Additional Pre-Conditions:
- The source model Uml must be loop-free

Additional Post-Conditions:
- Task identifiers (UID) of the target model MsProject must be unique

Specification:
- context MSProject!Task:
 - not MSProject!Task.allInstances() ->exists(e | e.uid = self.uid and e <> self)

Pseudo Code:
- -- Rule 'Main'
- -- This rule generates the Project element. Contained tasks are those
- -- associated with:
- -- * UML Final State
- -- * UML Action State
- -- * UML Pseudostate of "initial" kind.

- -- Rule 'Pseudostate'
- -- This rule generates a Task for the Pseudostate of "initial" type (that is,
-- the diagram initial state).
-- The generated initial Task has no predecessors (since it corresponds to the
-- initial state of the UML activity diagram).

-- Rule 'StateVertex'
-- This rule generates Tasks for both ActionStates and FinalStates.
-- The set of predecessors of a Task is computed by the getPredecessors helper.
-- It corresponds to the set of ActionState/"initial" Pseudostate pointing to
-- the current state directly, or through one or several "fork" and "join"
-- Pseudostates.